
Basics

Expanding objects
Much of the data we receive from cmdlets are objects that require further manipulation to get to
the data we're looking for.

Below is example output of the above script:

The actual data we're looking for related to From and Sender is in the following expansions:

Connect to Microsoft Graph
Connect-MgGraph -Scopes "Mail.Read"

Define the user and folder details
$userId = "user@domain.com"
$mailFolderId = "folder-id-here"

Get the messages in the specified folder
$messages = Get-MgUserMailFolderMessage -UserId $userId -MailFolderId $mailFolderId

Format the output to expand sender, from, and include subject
$messages | Select-Object -Property Id,ReceivedDateTime,From,Sender,Subject | Format-List

example output without object expansion
note the un-expanded values for From and Sender
Id : [REDACTED_GUID]
ReceivedDateTime : MM/DD/YYYY 2:52:35 AM
Subject : [REDACTED_SUBJECT]
From : Microsoft.Graph.PowerShell.Models.MicrosoftGraphRecipient
Sender : Microsoft.Graph.PowerShell.Models.MicrosoftGraphRecipient

Below is an example of how to accomplish that in the Select-Object statement:

The output is not actual useful data, rather than the name of the object type that was returned:

Using variables in -Filter statements

From.EmailAddress.Name
From.EmailAddress.Address
Sender.EmailAddress.Name
Sender.EmailAddress.Address

Connect to Microsoft Graph
Connect-MgGraph -Scopes "Mail.Read"

Define the user and folder details
$userId = "user@domain.com"
$mailFolderId = "folder-id-here"

Get the messages in the specified folder
$messages = Get-MgUserMailFolderMessage -UserId $userId -MailFolderId $mailFolderId

Format the output to expand sender, from, and include subject
$messages | Select-Object -Property Subject,
 @{Name="SenderName";Expression={$_.Sender.EmailAddress.Name}},
 @{Name="SenderEmail";Expression={$_.Sender.EmailAddress.Address}},
 @{Name="FromName";Expression={$_.From.EmailAddress.Name}},
 @{Name="FromEmail";Expression={$_.From.EmailAddress.Address}} |
 Format-List

Id : [REDACTED_GUID]
ReceivedDateTime : MM/DD/YYYY 2:52:35 AM
Subject : Weekly Duo Report
SenderName : Security Team
SenderEmail : security@domain.com
FromName : Security Team
FromEmail : security@domain.com

Example of using a variable in a -Filter statement with the Get-ADGroup cmdlet. Note this cmdlet
doesn't properly throw exceptions that can be handled by a try / catch block, so we have to use a
Filter statement and check to see if anything was returned.

Assign group name we're looking for to a variable
$GroupName = "Administrators"

Get-ADGroup doesn't throw exceptions properly, so we have to work around this since we can't use try / catch
$Group = Get-ADGroup -Filter "Name -eq '$GroupName'" -Properties members

If ($Group -eq $null) {
 "# $($GroupName) - group not found!!!"
} else {
 "# $($GroupName)"
}

Revision #4
Created 8 November 2023 14:51:43 by bluecrow76
Updated 26 November 2024 17:10:53 by bluecrow76

