Basics

Expanding objects

Much of the data we receive from cmdlets are objects that require further manipulation to get to
the data we're looking for.

Connect to Microsoft Graph
Connect-MgGraph -Scopes "Mail.Read"

Define the user and folder details
$userld = "user@domain.com"

$mailFolderld = "folder-id-here"

Get the messages in the specified folder

$messages = Get-MgUserMailFolderMessage -Userld $userld -MailFolderld $mailFolderld

Format the output to expand sender, from, and include subject

$messages | Select-Object -Property Id,ReceivedDateTime,From,Sender,Subject | Format-List

Below is example output of the above script:

example output without object expansion

note the un-expanded values for From and Sender
Id : [REDACTED_GUID]
ReceivedDateTime : MM/DD/YYYY 2:52:35 AM

Subject : [REDACTED_SUBJECT]
From : Microsoft.Graph.PowerShell.Models.MicrosoftGraphRecipient
Sender : Microsoft.Graph.PowerShell.Models.MicrosoftGraphRecipient

The actual data we're looking for related to From and Sender is in the following expansions:

From.EmailAddress.Name
From.EmailAddress.Address
Sender.EmailAddress.Name

Sender.EmailAddress.Address

Below is an example of how to accomplish that in the Select-Object statement:

Connect to Microsoft Graph
Connect-MgGraph -Scopes "Mail.Read"

Define the user and folder details
$userld = "user@domain.com"

$mailFolderld = "folder-id-here"

Get the messages in the specified folder

$messages = Get-MgUserMailFolderMessage -Userld $userld -MailFolderld $mailFolderld

Format the output to expand sender, from, and include subject

$messages | Select-Object -Property Subject,
@{Name="SenderName";Expression={$_.Sender.EmailAddress.Name}},
@{Name="SenderEmail";Expression={$_.Sender.EmailAddress.Address}},
@{Name="FromName";Expression={$_.From.EmailAddress.Name}},
@{Name="FromEmail";Expression={$_.From.EmailAddress.Address}} |

Format-List

The output is not actual useful data, rather than the name of the object type that was returned:

Id : [REDACTED_GUID]
ReceivedDateTime : MM/DD/YYYY 2:52:35 AM

Subject : Weekly Duo Report
SenderName : Security Team
SenderEmail : security@domain.com
FromName : Security Team
FromEmail : security@domain.com

Using variables in -Filter statements

Example of using a variable in a -Filter statement with the Get-ADGroup cmdlet. Note this cmdlet
doesn't properly throw exceptions that can be handled by a try / catch block, so we have to use a
Filter statement and check to see if anything was returned.

Assign group name we're looking for to a variable

$GroupName = "Administrators"

Get-ADGroup doesn't throw exceptions properly, so we have to work around this since we can't use try / catch

$Group = Get-ADGroup -Filter "Name -eq '$GroupName' -Properties members

If ($Group -eq $null) {

"# $($GroupName) - group not found!!!"
} else {

"# $($GroupName)"
}

Revision #4
Created 8 November 2023 14:51:43 by bluecrow76
Updated 26 November 2024 17:10:53 by bluecrow76

