
These commands allow you to generate CSRs, Certificates, Private Keys and do other
miscellaneous tasks.

Generate a new private key and Certificate Signing Request

Generate a self-signed certificate (see How to Create and Install an Apache Self Signed Certificate
for more info)

Generate a certificate signing request (CSR) for an existing private key

Generate a certificate signing request based on an existing certificate

Remove a passphrase from a private key

If you need to check the information within a Certificate, CSR or Private Key, use these commands.
You can also check CSRs and check certificates using our online tools.

The Most Common OpenSSL
Commands

General OpenSSL Commands

openssl req -out CSR.csr -new -newkey rsa:2048 -nodes -keyout privateKey.key

openssl req -x509 -sha256 -nodes -days 365 -newkey rsa:2048 -keyout privateKey.key -out

certificate.crt

openssl req -out CSR.csr -key privateKey.key -new

openssl x509 -x509toreq -in certificate.crt -out CSR.csr -signkey privateKey.key

openssl rsa -in privateKey.pem -out newPrivateKey.pem

Checking Using OpenSSL

Check a Certificate Signing Request (CSR)

Check a private key

Check a certificate

Check a PKCS#12 file (.pfx or .p12)

If you are receiving an error that the private doesn't match the certificate or that a certificate that
you installed to a site is not trusted, try one of these commands. If you are trying to verify that an
SSL certificate is installed correctly, be sure to check out the SSL Checker.

Check an MD5 hash of the public key to ensure that it matches with what is in a CSR or private key

Check an SSL connection. All the certificates (including Intermediates) should be displayed

These commands allow you to convert certificates and keys to different formats to make them
compatible with specific types of servers or software. For example, you can convert a normal PEM
file that would work with Apache to a PFX (PKCS#12) file and use it with Tomcat or IIS. Use our SSL
Converter to convert certificates without messing with OpenSSL.

Convert a DER file (.crt .cer .der) to PEM

openssl req -text -noout -verify -in CSR.csr

openssl rsa -in privateKey.key -check

openssl x509 -in certificate.crt -text -noout

openssl pkcs12 -info -in keyStore.p12

Debugging Using OpenSSL

openssl x509 -noout -modulus -in certificate.crt | openssl md5

openssl rsa -noout -modulus -in privateKey.key | openssl md5

openssl req -noout -modulus -in CSR.csr | openssl md5

openssl s_client -connect www.paypal.com:443

Converting Using OpenSSL

Convert a PEM file to DER

Convert a PKCS#12 file (.pfx .p12) containing a private key and certificates to PEM

You can add -nocerts to only output the private key or add -nokeys to only output the certificates.

Convert a PEM certificate file and a private key to PKCS#12 (.pfx .p12)

Source

The process below shows an "easy" way to add the certificateTemplateName to the certificate
request that will be submitted to Windows CA Services.

1. Create an openssl configuration file for your request based on the template shown below.
1. Make sure you update all the subject alternative names entries.

2. Use the script below to create the certificate request.

openssl x509 -inform der -in certificate.cer -out certificate.pem

openssl x509 -outform der -in certificate.pem -out certificate.der

openssl pkcs12 -in keyStore.pfx -out keyStore.pem -nodes

openssl pkcs12 -export -out certificate.pfx -inkey privateKey.key -in certificate.crt -

certfile CACert.crt

View CRL
openssl crl -inform DER -text -noout -in crl.crl

openssl crl -inform PEM -text -noout -in crl.crl

Generate a request for Windows CA
Services

https://www.sslshopper.com/article-most-common-openssl-commands.html

FILE: server.mydomain.com.openssl.cnf

#

run the following to generate the request:

openssl req -newkey rsa:2048 -keyout server.mydomain.com -out server.mydomain.com.req -nodes

-config server.mydomain.com.openssl.cnf

oid_section = OIDs

[OIDs]

certificateTemplateName = 1.3.6.1.4.1.311.20.2

[req]

default_bits = 2048

distinguished_name = req_distinguished_name

req_extensions = req_ext

[req_distinguished_name]

countryName = Country Name (2 letter code)

countryName_default = US

stateOrProvinceName = State or Province Name (full name)

stateOrProvinceName_default = My State

localityName = Locality Name (eg, city)

localityName_default = My City

organizationalUnitName = Organizational Unit Name (eg, section)

organizationalUnitName_default = My Org

commonName = Common Name

commonName_default = server.mydomain.com

commonName_max = 64

[req_ext]

subjectAltName = @alt_names

Replace PKI-WebServer with your certificate template name, NOT the display name

certificateTemplateName = ASN1:PRINTABLESTRING:PKI-WebServer

[alt_names]

DNS.1 = server.mydomain.com

DNS.2 = server1.mydomain.com

DNS.3 = server2.mydomain.com

IP.1 = 10.1.2.3

#!/bin/bash

change this to match your certificate primary common name

CERTBASE="server.mydomain.com"

generate timestamp

printf -v TIMESTAMP '%(%Y%m%d-%H%M%S)T' -1

generate new private key and csr

openssl req -newkey rsa:2048 -keyout "$CERTBASE.$TIMESTAMP.key" -out

"$CERTBASE.$TIMESTAMP.req" -nodes -config "$CERTBASE.openssl.cnf"

Revision #6
Created 15 December 2020 06:42:17 by bluecrow76
Updated 17 April 2025 10:08:43 by bluecrow76

